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Paradox of heat conduction
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Paradox of heat conduction

One of the most successful models in continuum physics is Fourier's law of heat

conduction
qg=—-xkVT

where q is the thermal flux vector, T is the temperature, and k > 0 stands for
the thermal conductivity.
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Paradox of heat conduction

One of the most successful models in continuum physics is Fourier's law of heat

conduction
q=—-kVT

where q is the thermal flux vector, T is the temperature, and k > 0 stands for
the thermal conductivity.

With this law, the widely used full compressible Navier-Stokes system in R¢
reads:
Orp + div(pu) =0,
O(pu) + div(pu ® u) + Vp = divr, (1)
Oc(pT) +div(puT + up) — kAT — div(7 - u) = 0.

A shortcoming of Fourier's law is that it leads to a parabolic equation for the
temperature field: any initial disturbance is felt instantly throughout the entire
medium.
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Paradox of heat conduction

One of the most successful models in continuum physics is Fourier's law of heat
conduction
qg=—-xkVT

where q is the thermal flux vector, T is the temperature, and k > 0 stands for
the thermal conductivity.

With this law, the widely used full compressible Navier-Stokes system in R¢
reads:
Orp + div(pu) =0,
O(pu) + div(pu ® u) + Vp = divr, (1)
Oc(pT) +div(puT + up) — kAT — div(7 - u) = 0.

A shortcoming of Fourier's law is that it leads to a parabolic equation for the
temperature field: any initial disturbance is felt instantly throughout the entire
medium.

And such behavior contradicts the principle of causality.
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An alternative

@ To correct this unrealistic feature, which is known as the paradox of heat
conduction, one solution is to use the Maxwell-Cattaneo law:

20.q+qg=—krVT,

where the thermal relaxation characteristic time ¢ represents the time lag
required to establish steady heat conduction in a volume element once a
temperature gradient has been imposed across it.
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An alternative

@ To correct this unrealistic feature, which is known as the paradox of heat
conduction, one solution is to use the Maxwell-Cattaneo law:

20+ q=—rVT,

where the thermal relaxation characteristic time ¢ represents the time lag
required to establish steady heat conduction in a volume element once a
temperature gradient has been imposed across it.

o Essentially, AT is now replaced by the first-order coupling (in blue) below:

Orp + div(pu) =0,

Ot(pu) + div(pu ® u) + Vp = divr,

Oc(pT) 4+ div(puT + up) + divg — div(r - u) =0,
20ig+ g+ kYT =0,

(NSCC)
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An alternative

@ To correct this unrealistic feature, which is known as the paradox of heat
conduction, one solution is to use the Maxwell-Cattaneo law:

20+ q=—rVT,

where the thermal relaxation characteristic time ¢ represents the time lag
required to establish steady heat conduction in a volume element once a
temperature gradient has been imposed across it.

o Essentially, AT is now replaced by the first-order coupling (in blue) below:

Orp + div(pu) =0,

Ot(pu) + div(pu ® u) + Vp = divr,

Oc(pT) 4+ div(puT + up) + divg — div(r - u) =0,
20ig+ g+ kYT =0,

(NSCC)

@ The partial time derivative added by Cattaneo transform the parabolic
heat-conduction equation into a damped hyperbolic equation. And the
propagation of a heat disturbance has a finite speed in such a model.
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An alternative

@ To correct this unrealistic feature, which is known as the paradox of heat
conduction, one solution is to use the Maxwell-Cattaneo law:

20+ q=—rVT,

where the thermal relaxation characteristic time ¢ represents the time lag
required to establish steady heat conduction in a volume element once a
temperature gradient has been imposed across it.

o Essentially, AT is now replaced by the first-order coupling (in blue) below:

Orp + div(pu) =0,

Ot(pu) + div(pu ® u) + Vp = divr,

Oc(pT) 4+ div(puT + up) + divg — div(r - u) =0,
20ig+ g+ kYT =0,

(NSCC)

@ The partial time derivative added by Cattaneo transform the parabolic
heat-conduction equation into a damped hyperbolic equation. And the
propagation of a heat disturbance has a finite speed in such a model.

@ We will now focus on this hyperbolic coupling and come back to this
hyperbolic Navier-Stokes equations later.
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First-order partially dissipative coupling
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Porous media approximation

@ During my Ph.D, in collaboration with Raphaél Danchin, we studied the
compressible Euler equations with damping:

Orp + div(pu) =0,

E
62(8tU+U'VU)+%(p)+U:O. )

This system can be understood as a hyperbolic approximation, as € — 0,
of the solution of the porous media equation:

atl'l — AP(I‘I) =0.
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Porous media approximation

@ During my Ph.D, in collaboration with Raphaél Danchin, we studied the
compressible Euler equations with damping:
Orp + div(pu) =0,
P E
62(8tU+U'VU)+vT(p)+U:O. )

This system can be understood as a hyperbolic approximation, as € — 0,
of the solution of the porous media equation:

81*[1 — AP(I‘I) =0.

@ Due to classical difficulties arising in the context of conservation laws, we
justified this limit in the context of global-in-time strong solutions that are
small perturbations of constant equilibrium.
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Porous media approximation

@ During my Ph.D, in collaboration with Raphaél Danchin, we studied the
compressible Euler equations with damping:

Orp + div(pu) =0,
E
62(8tU+U'VU)+%(p)+U:O. )

This system can be understood as a hyperbolic approximation, as € — 0,
of the solution of the porous media equation:

81*[1 — AP(I‘I) =0.

@ Due to classical difficulties arising in the context of conservation laws, we
justified this limit in the context of global-in-time strong solutions that are
small perturbations of constant equilibrium.

@ Our results is the first one to exhibit an explicit convergence rate of the
relaxation process in the multi-dimensional setting.
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Porous media approximation

During my Ph.D, in collaboration with Raphaél Danchin, we studied the
compressible Euler equations with damping:

Orp + div(pu) =0,

E
62(8tU+U'VU)+%(p)+U:O. )

This system can be understood as a hyperbolic approximation, as € — 0,
of the solution of the porous media equation:

81*[1 — AP(I‘I) =0.

Due to classical difficulties arising in the context of conservation laws, we
justified this limit in the context of global-in-time strong solutions that are
small perturbations of constant equilibrium.

Our results is the first one to exhibit an explicit convergence rate of the
relaxation process in the multi-dimensional setting.

To do so, we derive uniform a priori estimates using the Littlewood-Paley
decomposition and tools from the hypocoercivity theory.
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Toy-model analysis
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Toy-model analysis

Let us have a look at the one-dimensional damped p-system
Oru+ Oxv =0,
Orv + Oxu + g =0.

@ Goal: obtain uniform-in-¢ a priori estimates to justify the global
well-posedness and the relaxation.
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Toy-model analysis

Let us have a look at the one-dimensional damped p-system
8tu —+ axv = 07
O:v + Oxu + Y —o.
€

@ Goal: obtain uniform-in-¢ a priori estimates to justify the global
well-posedness and the relaxation.
o First difficulty: how to handle the partially dissipative structure? Indeed,
standard energy estimates leads to:
d 2 1,0
el liz + Zliviie < 0

which lacks of coercivity: it does not provide any time-decay
information on the component wu.
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Toy-model analysis

Let us have a look at the one-dimensional damped p-system
8tu —+ axv = 07

Orv + Oxu + g =0.

@ Goal: obtain uniform-in-¢ a priori estimates to justify the global
well-posedness and the relaxation.

o First difficulty: how to handle the partially dissipative structure? Indeed,
standard energy estimates leads to:

& ) + vl <0

which lacks of coercivity: it does not provide any time-decay
information on the component wu.

o ldea: Inspired by the hypocoercivity theory, consider the following
perturbed functional

22 = ||(u, v, Bets, ) |2 +e/ vO,u.
R
Differentiating in time this functional, one obtains

d 1
552 + gHVHfz + &||(Bxu, Bxv)||% < 0.
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Toy-model analysis (continued)

o Second difficulty: the decay rates depend on the frequencies and the
relaxation parameter ¢.

From the previous estimate, one obtains

d .1
S 10 )llez + min( 2, el¢]*)]|(, v)]l.2 < 0.
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Toy-model analysis (continued)

o Second difficulty: the decay rates depend on the frequencies and the
relaxation parameter ¢.

From the previous estimate, one obtains

d .1
S 10 )llez + min( 2, el¢]*)]|(, v)]l.2 < 0.

. . 1 . .
@ Therefore, in low frequencies || < =, the solution behaves as the solution
€
of the heat equation.

. 1 L .
@ And, in high frequencies |£| > =, the solution is exponentially damped.
€
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Toy-model analysis (continued)

o Second difficulty: the decay rates depend on the frequencies and the
relaxation parameter ¢.

From the previous estimate, one obtains

d .1
S 10 )llez + min( 2, el¢]*)]|(, v)]l.2 < 0.

. . 1 . .
@ Therefore, in low frequencies || < =, the solution behaves as the solution
€
of the heat equation.

. 1 L .
@ And, in high frequencies |£| > =, the solution is exponentially damped.
€

e For U = (u,v), one has

h —A
U ()l i2ra gny < Ce™ [ Vol 2 (e

¢ _d
U ()| oo (met mmy < Ct™ 2 || Uol| 1 )

where U" and U* correspond, respectively, to the high and low frequencies
of the solution.
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A side note on hypocoercivity for general systems

For general partially dissipative hyperbolic systems of the form

0 0) with D > 0,

0:U+ A0xU+ BU =0 where B:<0 D

the previous idea can also be applied under the following condition:

Definition (Shizuta-Kawashima '80s)

V€ € R, ker BN {eigenvectors of A{} = {0}. (SK)
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A side note on hypocoercivity for general systems

For general partially dissipative hyperbolic systems of the form

0 O) with D > 0,

0:U+ A0xU+ BU =0 where B:<O D

the previous idea can also be applied under the following condition:

Definition (Shizuta-Kawashima '80s)

V€ € R, ker BN {eigenvectors of A{} = {0}. (SK)

Such condition was actually discovered to be equivalent to the Kalman rank
condition for the couple (B, A¢).
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A side note on hypocoercivity for general systems

For general partially dissipative hyperbolic systems of the form

0 O) with D > 0,

0:U+ A0xU+ BU =0 where B:<O D

the previous idea can also be applied under the following condition:

Definition (Shizuta-Kawashima '80s)

V€ € R, ker BN {eigenvectors of A{} = {0}. (SK)

Such condition was actually discovered to be equivalent to the Kalman rank
condition for the couple (B, A¢).

Inspired by this fact and the theories of hypocoercivity and hypoellipticity,
Beauchard and Zuazua constructed the following Lyapunov functional to
recover decay estimates:

gé||u||i,1+/ T where T23Y e (BAU- BAD).
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A side note on hypocoercivity for general systems

For general partially dissipative hyperbolic systems of the form

0 O) with D > 0,

0:U+ A0xU+ BU =0 where B:<O D

the previous idea can also be applied under the following condition:

Definition (Shizuta-Kawashima '80s)

V€ € R, ker BN {eigenvectors of A{} = {0}. (SK)

Such condition was actually discovered to be equivalent to the Kalman rank
condition for the couple (B, A¢).

Inspired by this fact and the theories of hypocoercivity and hypoellipticity,
Beauchard and Zuazua constructed the following Lyapunov functional to
recover decay estimates:

n—1

gé||u||i,1+/ T where T23Y e (BAU- BAD).

k=1
Again, differentiating in time this functional leads to

%L + kmin(L, [¢2)£ < 0.
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About hypocoercive tools

@ However, this hyperbolic hypocoercivity approach does not depict the full
story for these systems.

@ Concerning the study of the high frequency of the solution, such analysis is
sufficient but the low frequency behavior of the solution is more involved.

@ And, as we shall see, the distinction between these two regime is crucial to
justify the relaxation process.
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"New" observations

@ Back to the damped p-system:

Oru+ Oxv =0,

2
afv+axu+§:0. (2)

A spectral analysis of the matrix associated to the system:

0 i€
i& 1
€

shows that:
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"New" observations

@ Back to the damped p-system:
Oru+ Oxv =0,

2
afv+axu+§:0. (2)

A spectral analysis of the matrix associated to the system:
0 i
. 1
& =
€
shows that:

1 1
o In low frequencies (|¢| < =), there are two real eigenvalues — and ££2.
£ £
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"New" observations

@ Back to the damped p-system:
Oru+ Oxv =0,

2
afv+axu+§:0. (2)

A spectral analysis of the matrix associated to the system:
0 i
. 1
& =
€

shows that:

1 1
o In low frequencies (|¢| < =), there are two real eigenvalues — and ££2.
€ €

1
o In high frequencies (|¢]| > =), two complex conjugate eigenvalues coexist,
€

1
whose real parts are asymptotically equal to %
e
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"New" observations

@ Back to the damped p-system:
Oru+ Oxv =0,

2
afv+axu+§:0. (2)

A spectral analysis of the matrix associated to the system:
0 i
. 1
& =
€
shows that:

1 1
o In low frequencies (|¢| < =), there are two real eigenvalues — and ££2.
6 £
1 .
o In high frequencies (|¢]| > =), two complex conjugate eigenvalues coexist,
€
1
whose real parts are asymptotically equal to %
e

o The threshold between low and high frequencies is at —
€
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"New" observations

@ Back to the damped p-system:

Oru+ Oxv =0,

2
O:rv + Oxu + (2)

o | <

A spectral analysis of the matrix associated to the system:
0 i
. 1
& =
€

shows that:

1 1
o In low frequencies (|¢| < =), there are two real eigenvalues — and ££2.
€

1 5
o In high frequencies (|¢]| > =), two complex conjugate eigenvalues coexist,
€

1
whose real parts are asymptotically equal to %
e

o The threshold between low and high frequencies is at —

€
o — The behavior of solution depend on the relation between ¢ and ¢ and
there is an extra property to use in low frequencies.
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Insights from the spectral analysis

@ There exists a damped mode in the low frequencies regime associated to

. 1 . . .
the eigenvalue = — Leads to crucial uniform estimates
€
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Insights from the spectral analysis

@ There exists a damped mode in the low frequencies regime associated to
. 1 . . .
the eigenvalue ~ — Leads to crucial uniform estimates

c
@ The asymptotic behaviour of the solution when ¢ — 0 is not so intuitive.

Crin-Barat Timothée Hyperbolic approximation



Insights from the spectral analysis

@ There exists a damped mode in the low frequencies regime associated to
. 1 . . .
the eigenvalue ~ — Leads to crucial uniform estimates

c
@ The asymptotic behaviour of the solution when ¢ — 0 is not so intuitive.
o Naively, we expect that as the damping coefficient becomes larger the
dissipation becomes more dominant.
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Insights from the spectral analysis

@ There exists a damped mode in the low frequencies regime associated to

the eigenvalue = — Leads to crucial uniform estimates

™ |

@ The asymptotic behaviour of the solution when ¢ — 0 is not so intuitive.
o Naively, we expect that as the damping coefficient becomes larger the
dissipation becomes more dominant.
o However, the so-called overdamping effect occurs: the decay rates are
related to (e,1/¢).
4
decay rates

-

1/e

@ To handle this phenomenon, not mixing the frequencies and having the

threshold between both frequency regime set at — is crucial.
€
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New goal: replicate what the spectral analysis tells
us at the level of the a priori estimates.

Crin-Barat Timothée Hyperbolic approximation



Low frequencies

@ To be able to take into account that the behavior of the solution depends
on the frequency region under the scope, we work with the following
hybrid homogeneous Besov norms:

IFlls = > 2”I1Aif]lz and IfH 23 2 A

j>1 i<t

where the Aj are operators localizing the Fourier transform of a
distribution in an annulus.
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Low frequencies

@ To be able to take into account that the behavior of the solution depends
on the frequency region under the scope, we work with the following
hybrid homogeneous Besov norms:

IFlls = > 2”I1Aif]lz and IfH 23 2 A

j>1 i<t

where the Aj are operators localizing the Fourier transform of a
distribution in an annulus.

@ And to recover the "missing” property in low frequency, let us look again
at damped p-system:
Oru+0xv =0

(f?tv—&—axu—&—g:O7
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Low frequencies

@ To be able to take into account that the behavior of the solution depends
on the frequency region under the scope, we work with the following
hybrid homogeneous Besov norms:

IFlls = > 2”I1Aif]lz and IfH 23 2 A

j>1 i<t

where the Aj are operators localizing the Fourier transform of a
distribution in an annulus.

@ And to recover the "missing” property in low frequency, let us look again
at damped p-system:
Oru+0xv =0

Orv + Oxu + v =0,
€
Defining the damped mode w = v + €0xu, the system can be rewritten
By — D u = —w

w 2
Otw + — = —e0v.
€
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Low frequencies

@ To be able to take into account that the behavior of the solution depends
on the frequency region under the scope, we work with the following
hybrid homogeneous Besov norms:

IFlls = > 2”I1Aif]lz and IfH 23 2 A

j>1 i<t

where the Aj are operators localizing the Fourier transform of a
distribution in an annulus.

@ And to recover the "missing” property in low frequency, let us look again
at damped p-system:
Oru+0xv =0

Orv + Oxu + g =0,

Defining the damped mode w = v + €0xu, the system can be rewritten
Deu — ediu = —Bw
Orw + g = —ed>v.

— Highlights the behavior observed in the spectral analysis, not just
the heat effect as depicted in the previous references.
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=

Localizing in frequency the system, for 2 < = one has
€

OiAju — e Aju = 8. Ajw,

AjW
£

DeAjw + = —edAjv.

@ In this frequency region, we have to deal with a heat equation and a
damped equation with source terms.
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e i1
Localizing in frequency the system, for 2 < =, one has

€
OiAju — e Aju = 8. Ajw,
DeAjw + Aéw = —edAjv.

@ In this frequency region, we have to deal with a heat equation and a
damped equation with source terms.

@ It is possible to study the two equations in a decoupled way without losing
derivatives. Indeed, thanks to the Bernstein inequality, the source terms
can be absorbed in the low-frequency regime:

¢ 1 e
10:Flls, < 21y,
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e i1
Localizing in frequency the system, for 2 < =, one has

€
OiAju — e Aju = 8. Ajw,
DeAjw + Aéw = —edAjv.

@ In this frequency region, we have to deal with a heat equation and a
damped equation with source terms.

@ It is possible to study the two equations in a decoupled way without losing
derivatives. Indeed, thanks to the Bernstein inequality, the source terms
can be absorbed in the low-frequency regime:

¢ 1 e
10:Flls, < 21y,

@ And thus in L” spaces!
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e i1
Localizing in frequency the system, for 2 < =, one has

€
OiAju — e Aju = 8. Ajw,
DeAjw + Aéw = —edAjv.

@ In this frequency region, we have to deal with a heat equation and a
damped equation with source terms.

@ It is possible to study the two equations in a decoupled way without losing
derivatives. Indeed, thanks to the Bernstein inequality, the source terms
can be absorbed in the low-frequency regime:

¢ 1 e
10:Flls, < 21y,

@ And thus in L” spaces!
@ One easily obtains

£ 4 1 4 14
1 )l , + el geizy + < 1w lEs cag ) < 11Ceos o, o)l

@ Due to the non-zero imaginary part of the eigenvalues in high frequencies,
such LP procedure is not available in this region.

o Nevertheless, we can still perform our analysis in such hybrid L? — LP
framework.
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Back to the compressible Euler equations

The system reads:

Oep + div(pu) =0,

E

X (Oru+ u - V)Jrvp(p) u=0. )

For this system, the damped mode verifying better properties in low frequencies
isw=u+ VP (p) which is associated to the Darcy law. Inserting it in the

above equation one recovers:

Ortp — AP(p) = divw.
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Back to the compressible Euler equations

The system reads:

Oep + div(pu) =0,

VP (E)
P

2 (Oru+ u- Vu) + u=0.

For this system, the damped mode verifying better properties in low frequencies

VP(p)

isw=u+ which is associated to the Darcy law. Inserting it in the

above equation one recovers:
Ortp — AP(p) = divw.

Then, using that [[w|[ss | = O(e) (as it solves a purely damped equation), in
the error estimates we can deduce that p converge strongly, at the rate ¢,
toward the solution of the porous media equation.
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Relaxation result

Theorem (Danchin, C-B, Math. Ann. 2022)

Letd>1, p€[2,4] and e > 0.

e Let p be a strictly positive constant and (p — p, v) be the solution of the
compressible Euler system with damping (constructed with the previous
arguments)

. d . d
o Let N € Co(RT;BE,) N L'(RT; IB%;’JH) be the unique solution associated to
the Cauchy problem:
{ N — AP(N) =0

. d
N(0,x) =Ny € B,

If we assume that

156 — No|l «_, < Ce,
]B;l
then
. VP(p* -
p° = NIl 4y =N 4 +H ~(gp)+"€ a = Ce
Loo(R B LI(RBP) ) P LARHBL)
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o Performing a similar analysis with Sobolev spaces does not allow to exhibit
an explicit convergence rate.
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o Performing a similar analysis with Sobolev spaces does not allow to exhibit
an explicit convergence rate.

@ One has to be careful when justifying the limit ¢ — 0. Indeed, recall that
1
the threshold between low and high frequencies is situated at —.
€
@ Therefore, when £ — 0, the low frequencies recovers the whole space of
frequency and the high frequencies disappear.

@ And the behavior of the solution in low frequencies is similar to the one of
the limit system.
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Application to a hyperbolic Navier-Stokes
system
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Hyperbolic Navier-Stokes equations

We have just seen that the equation
Ou—Au=0
can be approximated, for a small €, by the following hyperbolic system
Oru+dive =0
{satv—FVu—i- v=0.

@ Our aim is now to understand to what extent this approximation can be
used to approximate systems modelling physical phenomena.
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Hyperbolic Navier-Stokes equations

We have just seen that the equation
otu—Au=0

can be approximated, for a small €, by the following hyperbolic system

Oiu+dive =0
ehv+Vu+v=0.

@ Our aim is now to understand to what extent this approximation can be
used to approximate systems modelling physical phenomena.

Performing such approximation for the compressible Navier-Stokes system, one
has

Orp + div(pu) =0,

Or(pu) +div(pu @ u) + Vp = divr,

Oc(pT) + div(puT + up) + divg — div(r - u) =0,
20:q+q+kKkVT =0,

(NSCC)

Let us now see how to justify that the solution of this system converge to the
solution of the classical Navier-Stokes.
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Frequency splitting

o First of all, knowledge about the limit system is necessary. Danchin
showed the existence of global-in-time strong solutions by highlighting that
the solution satisfy different properties for |{| < K and |§| > K where K is
a large constant.
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Frequency splitting

o First of all, knowledge about the limit system is necessary. Danchin
showed the existence of global-in-time strong solutions by highlighting that
the solution satisfy different properties for |{| < K and |§| > K where K is
a large constant.

@ On the other hand, we just saw that the hyperbolic approximation via a
coupling of the partially-dissipative type also suggests to distinguish two

distinct frequency regimes with a threshold located at —.
€
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Frequency splitting

o First of all, knowledge about the limit system is necessary. Danchin
showed the existence of global-in-time strong solutions by highlighting that
the solution satisfy different properties for |{| < K and |§| > K where K is
a large constant.

@ On the other hand, we just saw that the hyperbolic approximation via a
coupling of the partially-dissipative type also suggests to distinguish two

distinct frequency regimes with a threshold located at —.

€
Therefore, in order to obtain the complete picture, it appears natural to divide
the frequency space as follows

Low Medium High
frequencies | frequencies frequencies

[ I T s

0 K 1 1]
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Frequency splitting

o First of all, knowledge about the limit system is necessary. Danchin
showed the existence of global-in-time strong solutions by highlighting that
the solution satisfy different properties for |£| < K and || > K where K is
a large constant.

@ On the other hand, we just saw that the hyperbolic approximation via a
coupling of the partially-dissipative type also suggests to distinguish two

distinct frequency regimes with a threshold located at —.

€
Therefore, in order to obtain the complete picture, it appears natural to divide
the frequency space as follows

Low Medium High
frequencies | frequencies frequencies

[ I T s

0 K 1 1]

Formally, when € — 0, it means that:
@ The low frequency regime is not modified.
@ The mid-frequency regime becomes larger and larger and recovers the
high-frequency regime.
@ The high frequency regime disappears.
And, in the limit, we retrieve the behavior of the compressible Navier-Stokes
system.
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Tools

In order to justify this preliminary analysis concretely, it is therefore necessary
to introduce functional spaces associated with each regimes: For p € [1, o]
and s € R, we define the homogeneous Besov spaces restricted in frequency as

follows:
IFEs =D 2%l IFIES = > 2"l
i<k P i<
h,e i
and ||f|[2F = > 2°|Ifll,2
S
where Jy = log,(K), for K > 0 a constant, and J. = — log,(¢).
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Tools

In order to justify this preliminary analysis concretely, it is therefore necessary
to introduce functional spaces associated with each regimes: For p € [1, o]
and s € R, we define the homogeneous Besov spaces restricted in frequency as

follows:
. . . .
1FlEg, = 26l I = 3 2l
i<Jh Jo<j<Je
h,e i
and [z == > 2"|fille
Pz
where Jy = log,(K), for K > 0 a constant, and J. = — log,(¢).

Then, in each regime, different methods have to be developed to derive a priori
estimates. Again, with a combination of hypocoercivity and efficient unknowns
but also tools similar to the one that were used to deal with the underlying
limit system.
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Extensions

@ To what extent can the Laplacian be replaced by a first-order
approximation? Bounded domains, numerics...

@ What about other operators?
In the context of stably stratified solutions of the two-dimensional damped
Boussinesq equation, with Roberta Bianchini and Marius Paicu, we showed
the incompressible porous media equation:

Op—R3p=0
can be approximated by the O-th order Boussinesq system:

€0tb+Rip+ b=0.

St

3
98

where the symbol of the Riesz operator R is
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@ What about other operators?
In the context of stably stratified solutions of the two-dimensional damped
Boussinesq equation, with Roberta Bianchini and Marius Paicu, we showed
the incompressible porous media equation:

Op—R3p=0

can be approximated by the O-th order Boussinesq system:

edcb+ Rip+ b = 0. (2DB)
&
€

Such justification involves anisotropic Besov spaces so as to recover crucial
L* bounds on the gradient of the solution.

{ 8[—[)4—7—\),11):07

where the symbol of the Riesz operator R is

Crin-Barat Timothée Hyperbolic approximation



Extensions

@ To what extent can the Laplacian be replaced by a first-order
approximation? Bounded domains, numerics...

@ What about other operators?
In the context of stably stratified solutions of the two-dimensional damped
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the incompressible porous media equation:
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Such justification involves anisotropic Besov spaces so as to recover crucial
L* bounds on the gradient of the solution.
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where the symbol of the Riesz operator R is

@ Quid of general conditions on a given operator for such an approximation
to hold.
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Thank you for your attention!
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