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Paradox of heat conduction

One of the most successful models in continuum physics is Fourier’s law of heat
conduction

q = −κ∇T

where q is the thermal flux vector, T is the temperature, and κ > 0 stands for
the thermal conductivity.

With this law, the widely used full compressible Navier-Stokes system in Rd

reads: 
∂tρ+ div(ρu) = 0,
∂t(ρu) + div(ρu ⊗ u) +∇p = divτ,
∂t(ρT ) + div(ρuT + up)− κ∆T − div(τ · u) = 0.

(1)

A shortcoming of Fourier’s law is that it leads to a parabolic equation for the
temperature field: any initial disturbance is felt instantly throughout the entire
medium.

And such behavior contradicts the principle of causality.
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An alternative

To correct this unrealistic feature, which is known as the paradox of heat
conduction, one solution is to use the Maxwell-Cattaneo law:

ε2∂tq + q = −κ∇T ,

where the thermal relaxation characteristic time ε represents the time lag
required to establish steady heat conduction in a volume element once a
temperature gradient has been imposed across it.

Essentially, ∆T is now replaced by the first-order coupling (in blue) below:
∂tρ+ div(ρu) = 0,
∂t(ρu) + div(ρu ⊗ u) +∇p = divτ,
∂t(ρT ) + div(ρuT + up) + divq − div(τ · u) = 0,
ε2∂tq + q + κ∇T = 0,

(NSCC)

The partial time derivative added by Cattaneo transform the parabolic
heat-conduction equation into a damped hyperbolic equation. And the
propagation of a heat disturbance has a finite speed in such a model.

We will now focus on this hyperbolic coupling and come back to this
hyperbolic Navier-Stokes equations later.
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First-order partially dissipative coupling
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Porous media approximation

During my Ph.D, in collaboration with Raphaël Danchin, we studied the
compressible Euler equations with damping:

∂tρ+ div(ρu) = 0,

ε2(∂tu + u · ∇u) +
∇P(ρ)

ρ
+ u = 0.

(E)

This system can be understood as a hyperbolic approximation, as ε → 0,
of the solution of the porous media equation:

∂tn −∆P(n) = 0.

Due to classical difficulties arising in the context of conservation laws, we
justified this limit in the context of global-in-time strong solutions that are
small perturbations of constant equilibrium.

Our results is the first one to exhibit an explicit convergence rate of the
relaxation process in the multi-dimensional setting.

To do so, we derive uniform a priori estimates using the Littlewood-Paley
decomposition and tools from the hypocoercivity theory.
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compressible Euler equations with damping:

∂tρ+ div(ρu) = 0,

ε2(∂tu + u · ∇u) +
∇P(ρ)

ρ
+ u = 0.

(E)

This system can be understood as a hyperbolic approximation, as ε → 0,
of the solution of the porous media equation:

∂tn −∆P(n) = 0.

Due to classical difficulties arising in the context of conservation laws, we
justified this limit in the context of global-in-time strong solutions that are
small perturbations of constant equilibrium.

Our results is the first one to exhibit an explicit convergence rate of the
relaxation process in the multi-dimensional setting.

To do so, we derive uniform a priori estimates using the Littlewood-Paley
decomposition and tools from the hypocoercivity theory.

Crin-Barat Timothée Hyperbolic approximation



Porous media approximation

During my Ph.D, in collaboration with Raphaël Danchin, we studied the
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Toy-model analysis

Let us have a look at the one-dimensional damped p-system ∂tu + ∂xv = 0,

∂tv + ∂xu +
v

ε
= 0.

Goal: obtain uniform-in-ε a priori estimates to justify the global
well-posedness and the relaxation.

First difficulty: how to handle the partially dissipative structure? Indeed,
standard energy estimates leads to:

d

dt
∥(u, v)∥2L2 +

1

ε
∥v∥2L2 ≤ 0

which lacks of coercivity: it does not provide any time-decay
information on the component u.

Idea: Inspired by the hypocoercivity theory, consider the following
perturbed functional

L2 = ∥(u, v , ∂xu, ∂xv)∥2L2 + ε

∫
R
v∂xu.

Differentiating in time this functional, one obtains

d

dt
L2 +

1

ε
∥v∥2L2 + ε∥(∂xu, ∂xv)∥2L2 ≤ 0.
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Toy-model analysis (continued)

Second difficulty: the decay rates depend on the frequencies and the
relaxation parameter ε.

From the previous estimate, one obtains

d

dt
∥(u, v)∥L2 +min(

1

ε
, ε|ξ|2)∥(u, v)∥L2 ≤ 0.

Therefore, in low frequencies |ξ| < 1

ε
, the solution behaves as the solution

of the heat equation.

And, in high frequencies |ξ| > 1

ε
, the solution is exponentially damped.

For U = (u, v), one has

∥Uh(t)∥L2(Rd ,Rn) ≤ Ce−λt∥U0∥L2(Rd ,Rn),

∥Uℓ(t)∥L∞(Rd ,Rn) ≤ Ct−
d
2 ∥U0∥L1(Rd ,Rn)

where Uh and Uℓ correspond, respectively, to the high and low frequencies
of the solution.
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A side note on hypocoercivity for general systems

For general partially dissipative hyperbolic systems of the form

∂tU + A∂xU + BU = 0 where B =

(
0 0
0 D

)
with D > 0,

the previous idea can also be applied under the following condition:

Definition (Shizuta-Kawashima ’80s)

∀ξ ∈ R, kerB ∩ {eigenvectors of Aξ} = {0}. (SK)

Such condition was actually discovered to be equivalent to the Kalman rank
condition for the couple (B,Aξ).

Inspired by this fact and the theories of hypocoercivity and hypoellipticity,
Beauchard and Zuazua constructed the following Lyapunov functional to
recover decay estimates:

L ≜ ∥U∥2H1 +

∫
Rd

I where I ≜ ℑ
n−1∑
k=1

εk
(
BAk−1Û · BAk Û

)
.

Again, differentiating in time this functional leads to

d

dt
L+ κmin(1, |ξ|2)L ≤ 0.
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About hypocoercive tools

However, this hyperbolic hypocoercivity approach does not depict the full
story for these systems.

Concerning the study of the high frequency of the solution, such analysis is
sufficient but the low frequency behavior of the solution is more involved.

And, as we shall see, the distinction between these two regime is crucial to
justify the relaxation process.
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”New” observations

Back to the damped p-system: ∂tu + ∂xv = 0,

∂tv + ∂xu +
v

ε
= 0.

(2)

A spectral analysis of the matrix associated to the system: 0 iξ

iξ
1

ε


shows that:

In low frequencies (|ξ| ≪
1

ε
), there are two real eigenvalues

1

ε
and εξ2.

In high frequencies (|ξ| ≫
1

ε
), two complex conjugate eigenvalues coexist,

whose real parts are asymptotically equal to
1

2ε
.

The threshold between low and high frequencies is at
1

ε
→ The behavior of solution depend on the relation between ξ and ε and
there is an extra property to use in low frequencies.
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Insights from the spectral analysis

There exists a damped mode in the low frequencies regime associated to

the eigenvalue
1

ε
→ Leads to crucial uniform estimates

The asymptotic behaviour of the solution when ε → 0 is not so intuitive.

Naively, we expect that as the damping coefficient becomes larger the
dissipation becomes more dominant.
However, the so-called overdamping effect occurs: the decay rates are
related to (ε, 1/ε).

1/ε

decay rates

To handle this phenomenon, not mixing the frequencies and having the

threshold between both frequency regime set at
1

ε
is crucial.
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New goal: replicate what the spectral analysis tells
us at the level of the a priori estimates.
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Low frequencies

To be able to take into account that the behavior of the solution depends
on the frequency region under the scope, we work with the following
hybrid homogeneous Besov norms:

∥f ∥hḂs
2,1

≜
∑
j≥ 1

ε

2js∥∆̇j f ∥L2 and ∥f ∥ℓḂs′
p,1

≜
∑
j≤ 1

ε

2js
′
∥∆̇j f ∥Lp

where the ∆̇j are operators localizing the Fourier transform of a
distribution in an annulus.

And to recover the ”missing” property in low frequency, let us look again
at damped p-system: ∂tu + ∂xv = 0

∂tv + ∂xu +
v

ε
= 0,

Defining the damped mode w = v + ε∂xu, the system can be rewritten∂tu − ε∂2
xxu = −∂xw

∂tw +
w

ε
= −ε∂2

xxv .

→ Highlights the behavior observed in the spectral analysis, not just
the heat effect as depicted in the previous references.
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Localizing in frequency the system, for 2j ≤ 1

ε
, one has

∂t∆̇ju − ε∂2
xx∆̇ju = −∂x∆̇jw ,

∂t∆̇jw +
∆̇jw

ε
= −ε∂2

xx∆̇jv .

In this frequency region, we have to deal with a heat equation and a
damped equation with source terms.

It is possible to study the two equations in a decoupled way without losing
derivatives. Indeed, thanks to the Bernstein inequality, the source terms
can be absorbed in the low-frequency regime:

∥∂x f ∥ℓBs
p,1

≤ 1

ε
∥f ∥ℓBs

p,1
.

And thus in Lp spaces!

One easily obtains

∥(u,w)∥ℓBs
p,1

+ ε∥u∥ℓ
L1
T
(Bs+2

p,1 )
+

1

ε
∥w∥ℓL1

T
(Bs

p,1)
≤ ∥(u0,w0, v0)∥ℓBs

p,1

Due to the non-zero imaginary part of the eigenvalues in high frequencies,
such Lp procedure is not available in this region.

Nevertheless, we can still perform our analysis in such hybrid L2 − Lp

framework.
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Back to the compressible Euler equations

The system reads: 
∂tρ+ div(ρu) = 0,

ε2(∂tu + u · ∇u) +
∇P(ρ)

ρ
+ u = 0.

(E)

For this system, the damped mode verifying better properties in low frequencies

is w = u +
∇P(ρ)

ρ
which is associated to the Darcy law. Inserting it in the

above equation one recovers:

∂tρ−∆P(ρ) = divw .

Then, using that ∥w∥Bs
p,1

= O(ε) (as it solves a purely damped equation), in
the error estimates we can deduce that ρ converge strongly, at the rate ε,
toward the solution of the porous media equation.
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Relaxation result

Theorem (Danchin, C-B, Math. Ann. 2022)

Let d ≥ 1, p ∈ [2, 4] and ε > 0.

Let ρ̄ be a strictly positive constant and (ρ− ρ̄, v) be the solution of the
compressible Euler system with damping (constructed with the previous
arguments)

Let N ∈ Cb(R+; Ḃ
d
p

p,1) ∩ L1(R+; Ḃ
d
p
+2

p,1 ) be the unique solution associated to
the Cauchy problem: {

∂tN −∆P(N ) = 0

N (0, x) = N0 ∈ Ḃ
d
p

p,1

If we assume that
∥ρ̃ε0 −N0∥

B
d
p
−1

p,1

≤ Cε,

then

∥ρ̃ε −N∥
L∞(R+;Ḃ

d
p
−1

p,1 )

+ ∥ρ̃ε −N∥
L1(R+;Ḃ

d
p
+1

p,1 )

+

∥∥∥∥∇P(ρ̃ε)

ρ̃ε
+ ṽε

∥∥∥∥
L1(R+;Ḃ

d
p
p,1)

≤ Cε.
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Remarks

Performing a similar analysis with Sobolev spaces does not allow to exhibit
an explicit convergence rate.

One has to be careful when justifying the limit ε → 0. Indeed, recall that

the threshold between low and high frequencies is situated at
1

ε
.

Therefore, when ε → 0, the low frequencies recovers the whole space of
frequency and the high frequencies disappear.

And the behavior of the solution in low frequencies is similar to the one of
the limit system.
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Application to a hyperbolic Navier-Stokes

system
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Hyperbolic Navier-Stokes equations

We have just seen that the equation

∂tu −∆u = 0

can be approximated, for a small ε, by the following hyperbolic system{
∂tu + divv = 0

ε∂tv +∇u + v = 0.

Our aim is now to understand to what extent this approximation can be
used to approximate systems modelling physical phenomena.

Performing such approximation for the compressible Navier-Stokes system, one
has 

∂tρ+ div(ρu) = 0,
∂t(ρu) + div(ρu ⊗ u) +∇p = divτ,
∂t(ρT ) + div(ρuT + up) + divq − div(τ · u) = 0,
ε2∂tq + q + κ∇T = 0,

(NSCC)

Let us now see how to justify that the solution of this system converge to the
solution of the classical Navier-Stokes.
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Frequency splitting

First of all, knowledge about the limit system is necessary. Danchin
showed the existence of global-in-time strong solutions by highlighting that
the solution satisfy different properties for |ξ| ≤ K and |ξ| ≥ K where K is
a large constant.

On the other hand, we just saw that the hyperbolic approximation via a
coupling of the partially-dissipative type also suggests to distinguish two

distinct frequency regimes with a threshold located at
1

ε
.

Therefore, in order to obtain the complete picture, it appears natural to divide
the frequency space as follows

|ξ|1

ε

K0
|||

High

frequencies
Medium

frequencies
Low

frequencies

Formally, when ε → 0, it means that:

The low frequency regime is not modified.
The mid-frequency regime becomes larger and larger and recovers the
high-frequency regime.
The high frequency regime disappears.

And, in the limit, we retrieve the behavior of the compressible Navier-Stokes
system.
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Tools

In order to justify this preliminary analysis concretely, it is therefore necessary
to introduce functional spaces associated with each regimes: For p ∈ [1,∞]
and s ∈ R, we define the homogeneous Besov spaces restricted in frequency as
follows:

∥f ∥ℓḂs
p,1

:=
∑
j≤J0

2js∥fj∥L2 , ∥f ∥m,ε

Ḃs
p,1

:=
∑

J0≤j≤Jε

2js∥fj∥L2

and ∥f ∥h,ε
Ḃs
p,1

:=
∑

j≥Jε−1

2js∥fj∥L2

where J0 = log2(K), for K > 0 a constant, and Jε = − log2(ε).

Then, in each regime, different methods have to be developed to derive a priori
estimates. Again, with a combination of hypocoercivity and efficient unknowns
but also tools similar to the one that were used to deal with the underlying
limit system.
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Extensions
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Extensions

To what extent can the Laplacian be replaced by a first-order
approximation? Bounded domains, numerics...

What about other operators?
In the context of stably stratified solutions of the two-dimensional damped
Boussinesq equation, with Roberta Bianchini and Marius Paicu, we showed
the incompressible porous media equation:

∂tρ−R2
1ρ = 0

can be approximated by the 0-th order Boussinesq system:{
∂tρ+R1b = 0,
ε∂tb +R1ρ+ b = 0.

(2DB)

where the symbol of the Riesz operator R1 is
ξ1
|ξ| .

Such justification involves anisotropic Besov spaces so as to recover crucial
L∞ bounds on the gradient of the solution.

Quid of general conditions on a given operator for such an approximation
to hold.
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Thank you for your attention!
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